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Abstract
This paper explores Human+Machine complementarity by
exploring differences in human and algorithmic decision
making, and whether these differences can be leveraged to
create hybrid models to more accurately predict ground-truth
labels. We utilize results from Dressel and Farid (2018) which
asked Mechanical Turk workers to evaluate a subset of defen-
dants in the ProPublica COMPAS data for risk of recidivism,
and concluded that COMPAS predictions were no more ac-
curate or fair than predictions made by humans. We delve
deeper into this claim to explore whether the Turk workers
and COMPAS were making the same recommendations, and
if not, what the differences were. Our results revealed key
differences in human versus algorithmic decision making in-
cluding which features are most salient to each system, and
when Humans and COMPAS disagreed. Based on these dif-
ferences, we constructed hybrid Human+Machine models to
harness this complementarity. Although our results showed
promise, further iteration is required to fully realize the po-
tential of hybrid Human+Machine models.

Introduction
There is an ongoing debate whether AI systems, such as risk
assessment, are superior to human judgment. Grove et al.
(2000) conducted a meta-analysis of 136 studies of human
health and behavior to assess clinical (Human) versus me-
chanical (Machine) predictions. Their results revealed that
on average, machine predictions were 10% more accurate
than Human predictions, however there were some studies
that showed no improvements and even a few cases where
human predictions were more accurate. In the context of re-
cidivism, the three studies in Grove et al.’s analysis revealed
similar levels of accuracy between human and machine pre-
dictions. However, Kleinberg et al. (2017) found that expert
Humans (judges)’s decisions can sometimes be highly vari-
able and biased by unobserved, irrelevant features.

The criminal justice field has used forecasting tools to per-
form risk assessment since the 1920s (see Gendreau, Freeze,
and Goggin (1996) and Andrews, Bonta, and Wormith
(2006) for meta-reviews). More recently, machine learning
approaches are being used to inform bail and sentencing de-
cisions (Berk and Bleich 2013; Angwin et al. 2016). But, this
raises concerns around accuracy, fairness, and transparency
of risk assessment systems (Andrews, Bonta, and Wormith
2006; Drake 2014; Zeng, Ustun, and Rudin 2016).

In a recent study related to Human vs. Machine predic-
tions of recidivism, Dressel and Farid (2018) showed that
a widely used commercial risk assessment system for re-
cidivism – COMPAS – was no more accurate or fair than
predictions made by people with little to no experience in
criminal justice. They sampled 1,000 defendants from the
ProPublica COMPAS data (Larson et al. 2016) and asked
Mechanical Turk workers to predict whether a defendant
would recidivate within two years (the same label predicted
by COMPAS). They also ran a second variant of their study
where defendants’ race was revealed. They did not find Hu-
man and COMPAS accuracies to be significantly different
(COMPAS: 65.2%, Humans without defendant race infor-
mation: 67.0%, and Humans with race information: 66.5%).

Although the Dressel and Farid study demonstrated that
the accuracy of COMPAS and Human predictions were
comparable, it was unclear whether COMPAS and Humans
were accurate on the same or disjoint sets of defendants. Sig-
nificant overlap would suggest that the Humans and COM-
PAS make similar assessments; less overlap suggests that
human reasoning differed from machine analysis. Humans
may have access to additional information or context not
available to algorithmic systems; machines may not be in-
fluenced by the same biases that plague human judgment or
may be better at using statistical signals learned from large
amounts of data. While previous work focused on an analy-
sis of machine vs. human, real-world implementation of re-
cidivism models target complementarity, where the goal for
machine models is to complement human decision-making.
However, whether and how machine and human comple-
mentarity exists in this domain is not studied. Thus, in this
work, we explore the similarities and differences between
Human and COMPAS decisions to determine whether a hy-
brid approach that combines the strengths and addressess the
weaknesses of human and machine decision making is pos-
sible, instead of focusing on the superiority (or lack thereof)
of algorithmic systems compared to human judgment.

Our contributions in this paper are:

• An understanding of how human and machine decisions
differ, and how and when they make errors.

• A characterization of agreement and disagreement be-
tween human and machine decision making to better un-
derstand their complementarity.



Table 1: Characterizing agreement and disagreement between COMPAS decisions, Human decisions, and ground truth. The
number of defendants and characteristics for each of the eight cases are described.

Case COMPAS Human Ground Agreement Correctness % Defendants Feature
Score Score Truth Characteristics*

1 High High Yes Agree Both correct 49.0% 1.5 < Priors ≤ 12.5
2 Low Low No Agree Both correct 23.5 < Age ≤ 48.5 & Priors < 1.5

3 High Low Yes Disagree COMPAS correct 16.2% 23.5 < Age ≤ 48.5 & Priors < 0.5
4 Low High No Disagree COMPAS correct 1.5 < Priors ≤ 5.5 & Age >32
5 Low High Yes Disagree Human correct 15.9% Similar to Case 4
6 High Low No Disagree Human correct Similar to Case 3

7 High High No Agree Both incorrect 18.9% No pattern, similar to Cases 1-68 Low Low Yes Agree Both incorrect
* Characteristics determined by decision tree (Figure A1) and clustering analysis. See more details in Analysis and Results section.

• An investigation of hybrid models to leverage differences
in human and machine decision making.

Based on our findings, we discuss the potential of hybrid
models and shortcomings of existing data sets. We make rec-
ommendations for data collection best practices for future
study of hybrid decision making in the fairness domain.

Related Work
Humans and decision making. In addition to the work
mentioned in the Introduction, Lakkaraju et. al., (2017b)
showed that analyses of recidivism based on human deci-
sions are further complicated by the “selective labels” prob-
lem, where observability of outcomes are affected by judges’
release decisions. Other work studied how humans perceive
different features as fair or not (Grgić-Hlača et al. 2018).

Hybrid models. Investigations across different domains
identify that humans and machines have weaknesses and
complementary abilities, thus suggesting benefits from hy-
brid models. In medicine, recent research showed that ex-
isting machine learning models with lower accuracy rates
than human experts can decrease expert error rates by 85%
(Wang et al. 2016). On challenging face recognition tasks,
combining multiple expert opinions does not improve task
accuracy, however complementing an expert with a inferior
face recognition system can (Phillips et al. 2018). On the
other hand, research on complementary computing demon-
strated how humans and machines can be more effective to-
gether in problem solving (Horvitz and Paek 2007) and im-
age classification tasks (Kamar, Hacker, and Horvitz 2012).

Diagnosing errors. The key to aggregating machine and
human analyses to improve performance is understanding
where and how machines and humans fail. Various ap-
proaches have been proposed for understanding where ma-
chine errors come from. Lakkaraju et al. (2017a) defined un-
known unknowns as cases where the model is highly confi-
dent of its predictions but is wrong. Kulesza et al. (2015)
uses human input to interactively correct a model. Another
approach is to distill black-box model decisions to inter-
pretable model classes to explain model failures (Nushi, Ka-
mar, and Horvitz 2018; Tan et al. 2018). We follow a similar
approach of utilizing interpretable models to analyze how

machines and humans reason about recidivism, when and
how their decisions differ and how they can be aggregated.

Approach
Constructing Human risk score
Our goal in this paper was to compare algorithmic and hu-
man decision making for complex decisions using recidi-
vism predictions as our initial domain. Dressel and Farid
provide data on both human predictions (from Mechani-
cal Turk workers), and algorithmic predictions (from COM-
PAS). One question is whether decisions made by Mechani-
cal Turk workers on this data are internally consistent, or, in
other words, whether different Turk workers assess risk sim-
ilarly for the same defendant. Large agreement among Turk
workers increases confidence that our subsequent findings
based on generating Human scores from Turk worker pre-
dictions generalize to Human decision making. We found
that on average, 80% of the Turk workers that assessed the
same defendant agreed with each other. This was a high
level of agreement, particularly for Mechanical Turk, where
spam labeling is commonly observed (Ipeirotis, Provost, and
Wang 2010). Hence, we perform a majority aggregation of
Turk workers’ predictions to assemble a Human risk score
for recidivism risk, hj . Specifically, we construct hj by tak-
ing the mean prediction across the Turk workers for each
defendant: let hij be Turk worker i’s prediction for defen-
dant j where hij ∈ {0, 1}, i = 1, . . . , 20, j = 1, . . . , 1000,
we take hj =

∑
i hij/2, dividing by two to scale hj to 1-10,

which is COMPAS’ scale. We constructed scores for both
conditions mentioned in the Introduction - a with-race Hu-
man score (HWR) for when Turk workers were told the de-
fendants’ race, and a no-race version (HNR).

For each score, we find the optimal cutoff point to binarize
the score by computing calibration, false positive, and false
negative rates at various cutoff points from 1 to 10. COM-
PAS, HNR, and HWR scores have approximately equal ac-
curacy, false positive, and false negative rates at the cutoff
point of >= 5 (Figure A3 in the supplementary material).
Hence, we chose this cutoff point for all three scores. Note
that Northpointe, the creator of COMPAS, also uses a >= 5
cut-off (Blomberg et al. 2010), and >= 5 is implied by Dres-



sel and Farid’s use of a “wisdom-of-the-crowd” based ma-
jority rules criterion.

Partitioning by agreement and correctness
We now sketch our approach towards studying how COM-
PAS and Human scores agree or disagree, and interact with
ground truth. Table 1 describes eight possible combinations
of two binary risk scores and ground truth. These eight com-
binations can be grouped into the four partitions illustrated
in Table 1: Both correct, Both incorrect, Human correct, and
COMPAS correct.

Comparing the level of agreement and correctness be-
tween the Human and COMPAS scores, we found that al-
most 50% of the time, Humans and COMPAS agree and are
correct (Table 1). However, for the remaining 50% of defen-
dants, either one, or both scores were incorrect. This sug-
gests that if error regions of COMPAS and Humans do not
perfectly overlap and can be characterized, then decision-
making processes can potentially be improved through uti-
lizing the complementary views of humans and machines.

When both risk scores agree and are correct, either score
will return the same prediction, hence it does not matter
which is used (in terms of accuracy). The space where both
scores agree but are incorrect according to ground truth is a
blind spot for COMPAS and Humans, also called unknown
unknowns (Lakkaraju et al. 2017a). To characterize the space
of agreement or disagreement between COMPAS and Hu-
man scores, we use clustering and decision trees. Table 1
summarizes our findings of the features that characterize
each case. Finally, when COMPAS and Human scores dis-
agree (Cases 3-6 in Table 1) we train hybrid risk scoring
models to see if they can leverage disagreement between the
two scores to improve on the accuracy of single scores.

Hybrid models
The simplest hybrid model is an average of two risk scores.
We train a slightly more sophisticated model - a weighted
average hybrid model that learns the optimal linear combi-
nation of two risk scores to predict ground truth.

If we had access to an oracle that can be queried to ob-
tain ground truth recidivism for any new observation, we
can determine which of COMPAS or Human scores better
predicts ground truth. However, test-time access to a ground
truth oracle is not realistic. Hence, we relax this assumption
of oracle access at test-time to only training-time, and train a
binary classification model only on observations where the
two risk scores disagree to predict which risk score to pick.
In other words, this model predicts which score – COMPAS
or Human – to use for Cases 3-6 in Table 1 using features
available at training time such as defendant features, Turk
worker features, COMPAS score, and Human score. We call
this an indirect hybrid model – indirect because the hybrid
model takes as input the prediction of which risk score is
better, and outputs the desired ground truth recidivism pre-
diction. Figure 1 shows this model. We also directly predict
ground truth recidivism as a function of not just features but
also the two risk scores. Figure 2 shows this model.

We test the hybrid models against random and single
score baselines. We use two types of random baselines: ran-
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Figure 1: Indirect hybrid model.
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Figure 2: Direct hybrid model.

dom ground truth labels, and random risk score. Single score
baselines are COMPAS or Human scores on their own (1-10
scale, or binarized at >=5), or models trained with defen-
dant and Turk worker features and the single score to predict
ground truth.

All hybrid and single models in this paper were trained
using the random forest model class, a model class shown
to perform well on many problems (Caruana and Niculescu-
Mizil 2006).

We use area under the ROC curve (AUC) as our main ac-
curacy measure, in line with several papers measuring re-
cidivism (US Sentencing Commission 2004). Besides AUC,
we also report balanced accuracy (Bal Acc), i.e., the mean
classification accuracy across classes. For error rates, we
track false positives (FPR), false negatives (FNR), false dis-
covery (FDR), and false omission (FOR). Equations for
these error rates are below. Note that Kleinberg (Klein-
berg, Mullainathan, and Raghavan 2017) and Choudechouva
(Chouldechova 2017) showed the impossibility of satisfy-
ing several of these metrics simultaneously. These results
are reported in the supplementary material. All metrics are
reported over ten 80%-20% train-test splits to account for
variability between test sets.

Analysis and Results
In this section, we report our findings of COMPAS and Hu-
man complementarity in terms of predictive performance



and decision making, characterize the space of COMPAS
and Human agreement and disagreement, and discuss results
from our hybrid models.

COMPAS vs. Humans: Predictive Performance
Across 1,000 defendants, Human scores have slightly higher
means than COMPAS (mean HNR 5.1, HWR 5.2, COMPAS
4.6, all on 1-10 scale), and the Human scores are more cor-
related with each other than with COMPAS (COMPAS and
HNR correlation 0.52, COMPAS and HWR 0.53, HNR and
HWR 0.93).

Table 2 displays the predictive performance of COMPAS
and Human scores, on all defendants and by race (this is
similar to Table 1 in Dressel and Farid (2018)). Most scores
achieved accuracies around 0.66 and AUCs around 0.70
when evaluated on all races, blacks, or whites. All scores
performed slightly worse for other races at approximately
0.65; there are only a small number of these defendants in
the data (9%). These findings replicate Dressel and Farid’s
findings when evaluating accuracies of the three scores.

Table 3 presents predictive performance separated by re-
cidivism status: whether the defendant recidivated or not.
Here, Humans were better at predicting defendants who re-
cidivate, while COMPAS was better at predicting defendants
who do not recidivate. In other words, on this data, Humans
tended to have higher true positive rates (and hence lower
false negative rates) and COMPAS tended to have higher
true negative rates (and hence lower false positive rates).

Table 2: COMPAS and Human accuracy and AUC when pre-
dicting ground truth recidivism.

Accuracy AUC

Race C HNR HWR C HNR HWR

All 0.65 0.66 0.66 0.70 0.71 0.71
Black 0.68 0.66 0.65 0.70 0.69 0.69
White 0.66 0.66 0.64 0.71 0.69 0.70
Other 0.65 0.60 0.66 0.64 0.65 0.65

Table 3: Refinement of Table 2 by recidivism status. Left:
defendants who do recidivate. Right: defendants who do
not recidivate. Only accuracies are displayed because AUC
cannot be calculated when ground truth only has one value
(“yes” for do recidivate, “no” for do not recidivate).

Accuracy

Do recidivate Do not recidivate

Race C HNR HWR C HNR HWR

All 0.62 0.68 0.69 0.69 0.64 0.63
Black 0.74 0.74 0.70 0.61 0.55 0.59
White 0.60 0.50 0.59 0.69 0.75 0.68
Other 0.38 0.59 0.65 0.80 0.61 0.66

We see similar effects for the level of agreement between
risk scores, race, and ground truth. COMPAS and Humans

demonstrate higher levels of agreement for correctly pre-
dicting that black defendants will recidivate, but their level
of agreement drops significantly for white or other race de-
fendants who recidivate. The opposite is true for defendants
who do not recidivate. COMPAS and Humans have higher
levels of agreement for correctly predicting that white and
other race defendants will not recidivate, but this level of
agreement drops for black defendants who do not recidivate.

COMPAS vs. Humans: Decision Making
Which features are most important in COMPAS and Hu-
man decision making? It is known that COMPAS scores
can be predicted from only a few features, in particular the
“number of priors” and age (Chouldechova and G’Sell 2017;
Angelino et al. 2017; Tan et al. 2018). To determine if Hu-
man decision making places more importance on other fea-
tures, we trained interpretable models to predict each of the
three scores. All three models saw the same set of features
– age, race, sex, number of juvenile misdemeanors, number
of juvenile felonies, number of (non-juvenile) priors, crime
charge degree (misdemeanor or felony), and crime charge.
First, we trained iGAM models, a type of additive model
based on nonparametric base learners (Caruana et al. 2015).
Figure 3 illustrates the importance of four of these features
for predicting each score. Like COMPAS, the two most
important features in Human decision making are the
“number of priors” and “age”. However, Human scores
place more weight on the “number of priors” and “charge de-
gree” features than COMPAS, whereas age’s impact is sim-
ilar for COMPAS and Human scores. Decision trees trained
to predict each of the three risk scores confirm that “number
of priors” is the most important feature, with every tree’s
root node splitting on this feature.

Including race when predicting these scores, even when
the scores may not have seen race, returns some interesting
findings. Recall that HNR scores were generated from Turk
workers who were not told the defendants’ race. We consid-
ered the impact of race on Human recidivism predictions,
by comparing the importance of the race feature on HWR
(green) and HNR (purple) scores in Figure 3. We find that
black defendants were assessed to have slightly higher re-
cidivism risk by Turk workers when told of their race. The
decision tree predicting the difference of HWR and HNR
scores in Figure A2 also agreed with this finding, returning
a first split on race where white defendants were assigned
slightly lower risk (-0.16) in the Human with-race condition,
and black and other race individuals were assigned slightly
higher risk (+0.14). In contrast, both decision trees predict-
ing the difference between COMPAS and HWR scores, as
well as COMPAS and HNR scores, split on “number of pri-
ors” and age but not race.

Hence, even though revealing race did not significantly af-
fect the predictive performance of Humans for ground truth,
as found by Dressel and Farid, including race appeared to
slightly effect Humans’ perception of recidivism risk (mag-
nitude around +/- 0.15 on a 1-10 score scale). Note, however,
that the set of Turk workers in the no-race and with-race con-
ditions were different; this effect may diminish or exacerbate
if the experiment is re-run with the same set of Turk workers.
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Figure 3: Predicting COMPAS (red), HWR (green), and HNR (purple) scores from features. The larger the y-axis magnitude,
the more important the feature. “Number of priors”, with y-axis scale -3 to 6, is the most important feature for all three scores,
followed by “age”.

COMPAS + Humans: Characterizing Agreement
& Disagreement
We now determine the features that drive agreement or dis-
agreement between COMPAS and Human scores. To do
so, we use two techniques – clustering and decision trees.
Specifically, we performed mean-shift clustering (Derpanis
2005), a robust-clustering method that avoids the need to
specify an arbitrary number of clusters, to cluster defendants
in each of Cases 1-8 from Table 1. We also built a multiclass
decision tree to classify individuals into each of the eight
cases. Finally, we assessed the distribution of features across
the found clusters and tree partitions. Figure A1 presents the
decision tree. We elaborate on our findings below. A sum-
mary of the feature characteristics is in Table 1.

Easy calls: COMPAS and Humans agree, both correct.
When we cluster defendants in this region of correct agree-
ment, two clusters emerge that map to the two cases. The key
separation between Cases 1 (COMPAS high, human high,
both correct) and 2 (COMPAS low, Human low, both cor-
rect) is the number of priors, and to a lesser extent age. The

average number of priors for defendants in Case 1 is 7.9, and
0.34 for Case 2. The average age for defendants in Case 1 is
30.3, and 40.56 for Case 2. Consequently, these cases corre-
spond to what one might consider easy calls, i.e., defendants
for whom the number of priors and age alone provide suffi-
cient information to predict recidivism accurately.

Unknown unknowns: COMPAS and Humans agree, but
both incorrect. Now we turn our attention to the region
of wrong agreement - defendants whose COMPAS and Hu-
man scores agree, yet fail to predict ground truth (Cases
7 & 8). These defendants are very similar to defendants
in other cases – they are truly unknown unknowns. Effec-
tively, defendants in Cases 7 & 8 are exactly defendants
for whom the number of priors and age alone are not dif-
ferent enough to distinguish them from defendants in other
cases, despite these defendants having fundamentally differ-
ent ground truth labels. Because both COMPAS and Human
scores are over reliant on the number of priors and age, both
scores fail for defendants for whom these two features alone
are not sufficient to predict recidivism.



Table 4: Test-set performance of hybrid models built on in-
dividuals whose COMPAS and Human risk scores disagree.
Best results in cyan and bolded. See Table A1 in the supple-
mentary material for an extended version of this table.

Type Model AUC

Hybrid
Best hybrid of C and HNR 0.60 ± 0.07
Best hybrid of C and HWR 0.58 ± 0.08
Best hybrid of C, HWR, HNR 0.58 ± 0.07

Single

Predict GT from features and HNR 0.59 ± 0.07
HNR (1-10 scale) 0.56 ± 0.05
Predict GT from features and HWR 0.54 ± 0.06
HWR (1-10 scale) 0.54 ± 0.04
Predict GT from features and C 0.51 ± 0.07
C (1-10 scale) 0.49 ± 0.06

None Predict GT from features 0.52 ± 0.07

Random
Randomly pick between C and HNR 0.55 ± 0.08
Randomly pick between C and HWR 0.54 ± 0.07
Randomly pick between C, HWR, HNR 0.54 ± 0.06

Characterizing the space of disagreement. Our key find-
ing for defendants for whom COMPAS and Human scores
disagree (Cases 3-6) mirrors our findings for the unknown
unknowns. These defendants had similar number of priors
and age as defendants in other cases. In general, the four
cases in the space of disagreement could not be cleanly sep-
arated from each other – Cases 3 and 6 were similar; Cases
4 and 5 were similar – and also overlapped with the space
of agreement. For example, defendants with low COMPAS
scores, high Human scores but did not recidivate (Case 4)
tended to have 1.5 to 5.5 priors and are younger than 32.5
years old. However, these defendants significantly overlap
with defendants in several other cases (Cases 1, 7, and 5 as
seen in Table 1).

COMPAS score high, Human score low (Cases 3 & 6).
The difference between Cases 3 and 6 is their ground truth
label - defendants in Case 3 recidivated, whereas defendants
in Case 6 did not. According to the decision tree’s partitions,
defendants in Cases 3 and 6 tend to have < 0.5 priors. In
fact, the key distinguishing feature between Cases 3 and 6 is
the type of crime that the defendant was charged with. In ad-
dition, we found that some of the multiclass trees we built to
predict classification into the eight cases did not always have
terminal nodes with Case 6. Sometimes, Case 6 is combined
with Case 3, indicating that the features do not have suffi-
cient signal to adequately distinguish these two cases.

COMPAS score low, Human score high (Cases 4 & 5).
The difference between Cases 4 and 5 is also their ground
truth label - defendants in Case 4 did not recidivate, whereas
defendants in Case 5 did. Case 4 defendants tended to have
1.5 to 5.5 priors and be older than 32.5 years old. Case 5 was
not always present as a terminal node in our trees, and are
very similar to defendants in Case 4 and also Cases 1 and 7
(in the space of agreement).

Table 5: Test-set performance of hybrid models built on all
individuals, compared to just using a single risk score and
other baselines. The benevolent oracle is the risk score best
at predicting ground truth, to provide an upper bound on the
accuracy reachable on this data set of any hybrid COMPAS-
Human model built on the two risk scores. The adversarial
oracle is the risk score worse at predicting ground truth, to
provide a lower bound. See Table A5 in the supplementary
material for an extended version of this table.

Type Model AUC

Oracle Benevolent oracle 0.85 ± 0.03
Adversarial oracle 0.57 ± 0.03

Hybrid
Best hybrid of C and HNR 0.74 ± 0.03
Best hybrid of C and HWR 0.74 ± 0.04
Best hybrid of C, HWR, HNR 0.73 ± 0.03

Single

HNR (1-10 scale) 0.72 ± 0.03
HWR (1-10 scale) 0.72 ± 0.03
C (1-10 scale) 0.71 ± 0.03
Predict GT from features and C 0.71 ± 0.03
Predict GT from features and HWR 0.71 ± 0.03
Predict GT from features and HNR 0.70± 0.03

None Predict GT from features 0.69 ± 0.02

Random
Randomly pick between C and HWR 0.73 ± 0.04
Randomly pick between C and HNR 0.72 ± 0.04
Randomly pick between C, HWR, HNR 0.71 ± 0.03

COMPAS + Humans: Leveraging Disagreement to
Build Hybrid Models
Since defendants for whom COMPAS and Human scores
disagree have the highest possibility of benefiting from hy-
brid models, we build two separate sets of hybrid models:
(1) models on all defendants

Hybrid methods tended to outperform single scores (or
models trained on features and single scores) by a small mar-
gin. In Table 4, the best performing model (AUC 0.60) is a
hybrid random forest predicting ground truth using features,
COMPAS, and Human (no-race condition) scores. This was
better than single risk scores (HNR 0.56, HWR 0.54, Com-
pas 0.49), but comparable to a random forest model trained
on the original features plus the HNR scores (but not with
COMPAS), which obtained an AUC of 0.59. Interestingly,
despite the low AUC of COMPAS (0.49), combining it with
HNR did not degrade the hybrid model’s performance and
in fact led to a small AUC improvement of 0.01. However,
this improvement is within the margin of error.

Next, we examine these results by race. Table A2 presents
these results for blacks, Table A3 for whites, and Table
A4 for other races. The trend is again similar, where hy-
brid models tended to obtain slightly better results than their
single-model counterparts, but improvements are typically
within the margin of error. Hybrid models for blacks had the
best accuracy and error rates; single models for other races
(only 31 defendants) had the best accuracy and error rates.

In general, the best hybrid models tended to leverage de-
fendant and Human worker features, plus both risk scores, to



either directly or indirectly predict ground truth recidivism.
For the space of disagreement, the best hybrid models also
tended to prefer HNR over HWR, particularly when evaluat-
ing races other than whites. On the other hand, for the space
of disagreement, hybrid models based on (weighted) aver-
ages of the COMPAS and human scores tend to underper-
form models that incorporated defendant and Human worker
features. Notably, this is not the case for all defendants as
the best performing hybrid models for all defendants were
the optimally weighted average models (Table A5).

We have shown that for defendants for whom COMPAS
and Human scores disagree, hybrid models can be more ben-
eficial than single risk scores (even when one of the scores is
not as high performing as the other, as is the case for COM-
PAS compared to Humans for this set of individuals), but, in
general, the improvements are marginal and, in many cases,
within the margin of error.

Discussion
Our key finding is that Human and Machine decision making
for recidivism predictions does differ and we were able to
characterize the space of how these decisions relate to each
other. Our exploration of a hybrid Human+Machine model
showed slight improvements in accuracy, but further itera-
tion is required to enhance this approach. From our analysis,
the number of priors is a key feature in both COMPAS and
Human decision making. We saw that COMPAS and Hu-
mans tended to agree (and were right) on defendants with
a very high or very low number of priors. We saw that the
defendants that COMPAS and humans agreed on (but were
wrong) were truly unknown unknowns – there was no dis-
cernable pattern in these cases. Unfortunately, they make up
19% of the data, which bounds the maximal possible im-
provement from a hybrid model on this data.

When we focused on the 32% of defendants where COM-
PAS and Human decisions disagree, our hybrid models
started to exhibit some improvement, though still within
the margin of error. The cases in this region were also the
most uncertain, with single risk scores achieving between
0.49 and 0.56 AUC. We saw that for this region of uncer-
tainty, single risk scores could be further improved by allow-
ing them to see some amount of ground truth labels, along-
side defendant features. We saw that number of priors, once
again, and age were the two most important features to deter-
mine whether a defendant would fall in Case 3-6, although
separation between these four cases was often not clear.

Several reasons could explain why we were not getting
better accuracy from the hybrid models: 1) Ground truth la-
bels are noisy. 2) Turk workers are not experts. 3) Ground
truth is inherently unpredictable or the features we have do
not present enough information to predict ground truth ac-
curately. 4) Small sample size.

Noisy ground truth labels
One limitation of our hybrid models is possible noise (or
bias) in the ground truth labels in the ProPublica COMPAS
data. The “primary” definition of recidivism from the US
Sentencing Commission (2004) is one of the following dur-
ing the defendant’s initial two years back in the community:

(1) re-conviction for a new offence; (2) re-arrest with no con-
viction; (3) supervision revocation. Although this definition
has traditionally been considered reliable, it is only a proxy
for ground truth and does not cover defendants arrested but
not convicted, or defendants not arrested despite committing
crimes. Use of this definition is also susceptible to racial or
socioeconomic bias, as people of color or those who live in
poorer communities may experience higher levels of polic-
ing, resulting in a higher rates of re-arrests (Eckhouse 2017).
As we continue to develop machine learning models for re-
cidivism, we need to reevaluate the ground truth labels we
are collecting to ensure they are unbiased.

Criminal justice expertise
It is important to note that the Human risk scores in our anal-
yses were obtained from Mechanical Turk workers. The eco-
logical validity of using Turk workers may be low, as they
have no criminal justice experience, and the decisions they
are asked to make (whether a defendant recidivates or not)
may have little relation to the types of decisions they make
in their day-to-day lives. Gathering human data from judges,
in actual legal settings, will help us further investigate the
potential of hybrid models in fairness domains. We need to
gather more quantitative and qualitative data on when judges
and algorithmic systems agree and disagree, and what ad-
ditional information the judge may be using to inform her
decision. This could help hybrid models better discern when
to choose human judgment over algorithmic prediction to
achieve better performance overall.

Lacking evidence about the world
We have two other hypotheses why our hybrid models only
marginally improve over the accuracy of COMPAS or Hu-
man scores alone despite the presence of differences in
COMPAS and Human reasoning. First, perhaps recidivism
is an unpredictable event with a lot of inherent uncertainty,
and as such, the accuracy of any model is limited. This is
consistent with prior work that found similar AUCs for com-
mercial recidivism prediction systems (Drake 2014). Sec-
ond, it could be that the seven features included in this data
are not sufficient to properly evaluate recidivism risk. This
second explanation is likely, since the Turk worker ratings
are only based on those seven features (besides race). In a
real world court setting, a judge has access to additional in-
formation that could be used to inform their reasoning. This
“private information” may be helpful, however it remains
to be seen if private information may also be detrimental to
human reasoning, as seen in Grove et al. (2000) and Klein-
berg et al. (2017) where physicians and judges sometimes
responded to private information in ways that caused them
to deviate from optimal judgment. In general, tracking as
many features as possible would enable more detailed study
of the value of private information in complex decision mak-
ing settings. Moreover, our analyses found that both COM-
PAS and Human both relied heavily on the number of pri-
ors and age. While these features may be considered “ob-
jective” (e.g. prior research showed a strong correlation be-
tween prior criminal record and recidivism (United States



Sentencing Commission 2016)), many defendants may ap-
pear similar when viewed through the lens of only two fea-
tures.

Small sample size
In our hybrid models trained on only the 340 defendants
for which COMPAS and Human scores disagreed, the im-
provements demonstrated were subsumed by large margin
of errors. This was also the case for further subgroups of
races (169 blacks, 114 whites, 31 other races). Repeating the
Mechanical Turk experiment and hybrid models on a larger
sample of the original ProPublica COMPAS data will pro-
vide more evidence as to whether human judgment can help
machines in making recidivism predictions.

Conclusion
In complex settings, like a courtroom or hospital, it is un-
likely that algorithmic systems will be making all decisions
without input from human experts. Our approach focused
efforts on cases where humans and machines disagree as a
potential area to enhance decision making. Ultimately, we
want to leverage the best of both worlds: humans that glean
subtle, interpersonal insights from rich context, and machine
algorithms that provide rigor and consistency. However, on
this data set, our hybrid models only showed minor improve-
ments in ground truth prediction of recidivism. An important
next step will be to further our investigation to include pre-
dictions made by judges in real-world settings or explore
our hybrid Human + Machine model approach on other do-
mains or datasets. We hypothesize that the richness of the
real-world may provide better context for enhanced hybrid
Human + Machine models.

A key debate in recidivism predictions involves issues of
bias and fairness, particularly for false positive and false
negative judgments. Although our work uncovered a few as-
pects where race had an impact, it was not the primary focus
of our work. We intend to look more closely at issues of bias
and fairness in future work, especially as we gather more
real-world data. Although both humans and algorithms can
have inherent biases, if these biases are different, a hybrid
model has the potential to help overcome them.
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Figure A2: Decision tree predicting the difference between scores. Left: difference in scores given by Turk workers when and
when not told of the defendant’s race (HWR - HNR). Center: difference in scores given by COMPAS and Turk workers not told
of the defendant’s race (C - HNR). Right:difference in scores given by COMPAS and Turk workers told of the defendant’s race
(C - HWR).

Figure A3: Accuracies (left), false positive rates (center), and false negative rates (right) for COMPAS and Human scores at
different cutoff points for binarizing the scores.



Supplementary Material B: Definitions of
Metrics

Given a binary label and a binary prediction, let FP denote
the number of false positives, FN denote the number of false
negatives, TP denote the number of true positives, and TN
denote the number of true negatives.

Balanced accuracy

BalAcc =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
False positive rate (FPR)

FPR =
FP

FP + TN

False negative rate (FPR)

FPR =
FN

FN + TP

False discovery rate (FDR)

FDR =
FP

FP + TP

False omission rate (FOR)

FOR =
FN

FN + TN



Supplementary Material C: Extended result tables for hybrid models for defendants whose
COMPAS and Human scores disagree

Table A1: Test-set performance of hybrid models built on individuals whose COMPAS and Human risk scores disagree, com-
pared to just using a single risk score and other baselines. The numbers presented are means and standard deviations calculated
over 10 train-test splits. Best results in cyan and bolded. A reduced version of this table can be seen in Table 4. Rows marked
with ∗ are the rows labeled as best in Table 4.

Type Model AUC Bal Acc FPR FNR FDR FOR
Hybrid Direct C HNR∗ 0.60 ± 0.07 0.56 ± 0.07 0.44 ± 0.13 0.45 ± 0.10 0.50 ± 0.10 0.39 ± 0.08
Hybrid Composed indirect C HWR∗ 0.58 ± 0.08 0.56 ± 0.08 0.37 ± 0.10 0.50 ± 0.10 0.47 ± 0.15 0.40 ± 0.10
Hybrid Direct C HWR HNR∗ 0.58 ± 0.07 0.55 ± 0.08 0.47 ± 0.14 0.43 ± 0.09 0.50 ± 0.09 0.40 ± 0.10
Hybrid Indirect C HWR∗ 0.58 ± 0.08 0.56 ± 0.08 0.37 ± 0.10 0.50 ± 0.10 0.47 ± 0.15 0.40 ± 0.10
Hybrid Composed indirect C HNR 0.56 ± 0.09 0.54 ± 0.06 0.45 ± 0.07 0.47 ± 0.09 0.52 ± 0.07 0.40 ± 0.08
Hybrid Indirect C HNR 0.56 ± 0.09 0.54 ± 0.06 0.45 ± 0.07 0.47 ± 0.09 0.52 ± 0.07 0.40 ± 0.08
Hybrid Direct C HWR 0.53 ± 0.06 0.52 ± 0.04 0.37 ± 0.09 0.58 ± 0.09 0.52 ± 0.14 0.44 ± 0.08
Hybrid Weighted average of C HNR 0.51 ± 0.05 0.50 ± 0.04 0.38 ± 0.25 0.63 ± 0.3 0.56 ± 0.22 0.43 ± 0.07
Hybrid Weighted average of C HWR HNR 0.50 ± 0.04 0.50 ± 0.05 0.23 ± 0.07 0.77 ± 0.13 0.58 ± 0.09 0.45 ± 0.11
Hybrid Weighted average of C HWR 0.47 ± 0.04 0.49 ± 0.03 0.39 ± 0.26 0.63 ± 0.26 0.56 ± 0.12 0.46 ± 0.11

Single Predict GT from features and HNR 0.59 ± 0.07 0.55 ± 0.06 0.44 ± 0.09 0.46 ± 0.10 0.51 ± 0.09 0.39 ± 0.07
Single HNR (1-10 scale) 0.56 ± 0.05 0.52 ± 0.02 0.55 ± 0.08 0.40 ± 0.08 0.54 ± 0.04 0.41 ± 0.07
Single Predict GT from features and HWR 0.54 ± 0.06 0.54 ± 0.05 0.35 ± 0.10 0.57 ± 0.08 0.49 ± 0.14 0.42 ± 0.09
Single HWR (1-10 scale) 0.54 ± 0.04 0.52 ± 0.03 0.54 ± 0.05 0.41 ± 0.04 0.53 ± 0.09 0.43 ± 0.10
Single Predict GT from features and C 0.51 ± 0.07 0.52 ± 0.05 0.41 ± 0.07 0.55 ± 0.08 0.52 ± 0.11 0.44 ± 0.10
Single C (1-10 scale) 0.49 ± 0.06 0.48 ± 0.01 0.40 ± 0.07 0.65 ± 0.08 0.59 ± 0.06 0.46 ± 0.04
Single C (binarized >=5) - 0.48 ± 0.01 0.40 ± 0.07 0.65 ± 0.08 0.59 ± 0.06 0.46 ± 0.04
Single HNR (binarized >=5) - 0.52 ± 0.01 0.60 ± 0.07 0.35 ± 0.08 0.54 ± 0.04 0.41 ± 0.06
Single HWR (binarized >=5) - 0.51 ± 0.03 0.63 ± 0.05 0.36 ± 0.05 0.54 ± 0.07 0.44 ± 0.12

None Predict GT from features 0.52 ± 0.07 0.51 ± 0.06 0.37 ± 0.07 0.61 ± 0.09 0.54 ± 0.13 0.45 ± 0.09

Random Randomly pick between C HNR 0.55 ± 0.08 0.52 ± 0.05 0.46 ± 0.06 0.50 ± 0.08 0.54 ± 0.07 0.42 ± 0.07
Random Randomly pick between C HWR 0.54 ± 0.07 0.52 ± 0.06 0.46 ± 0.06 0.49 ± 0.11 0.53 ± 0.14 0.43 ± 0.08
Random Randomly pick between C HWR HNR 0.54 ± 0.06 0.52 ± 0.06 0.50 ± 0.07 0.46 ± 0.08 0.53 ± 0.10 0.43 ± 0.11

Table A2: Subgroup (African-Americans) performance of models presented in Table A1.

Type Model AUC Bal Acc FPR FNR FDR FOR
Hybrid Direct C HNR 0.65 ± 0.06 0.58 ± 0.07 0.48 ± 0.15 0.35 ± 0.13 0.46 ± 0.11 0.37 ± 0.10
Hybrid Direct C HWR HNR 0.63 ± 0.07 0.59 ± 0.07 0.50 ± 0.15 0.32 ± 0.11 0.45 ± 0.09 0.36 ± 0.13
Hybrid Composed indirect C HWR 0.57 ± 0.12 0.58 ± 0.10 0.41 ± 0.15 0.43 ± 0.14 0.43 ± 0.17 0.41 ± 0.12
Hybrid Indirect C HWR 0.57 ± 0.12 0.58 ± 0.10 0.41 ± 0.15 0.43 ± 0.14 0.43 ± 0.17 0.41 ± 0.12
Hybrid Weighted average of C HNR 0.55 ± 0.06 0.51 ± 0.07 0.33 ± 0.19 0.64 ± 0.31 0.65 ± 0.21 0.42 ± 0.12
Hybrid Weighted average of C HWR HNR 0.55 ± 0.08 0.55 ± 0.08 0.12 ± 0.09 0.78 ± 0.15 0.35 ± 0.21 0.45 ± 0.15
Hybrid Composed indirect C HNR 0.53 ± 0.09 0.52 ± 0.07 0.54 ± 0.10 0.41 ± 0.07 0.52 ± 0.07 0.44 ± 0.13
Hybrid Indirect C HNR 0.53 ± 0.09 0.52 ± 0.07 0.54 ± 0.10 0.41 ± 0.07 0.52 ± 0.07 0.44 ± 0.13
Hybrid Direct C HWR 0.51 ± 0.07 0.51 ± 0.07 0.40 ± 0.14 0.57 ± 0.12 0.50 ± 0.17 0.48 ± 0.10
Hybrid Weighted average of C HWR 0.48 ± 0.09 0.49 ± 0.07 0.37 ± 0.27 0.65 ± 0.26 0.50 ± 0.16 0.51 ± 0.15

Single Predict GT from features and HNR 0.64 ± 0.06 0.56 ± 0.06 0.48 ± 0.13 0.39 ± 0.13 0.48 ± 0.10 0.39 ± 0.09
Single HNR (1-10 scale) 0.55 ± 0.07 0.56 ± 0.05 0.46 ± 0.09 0.42 ± 0.15 0.49 ± 0.08 0.39 ± 0.09
Single HWR (1-10 scale) 0.53 ± 0.08 0.53 ± 0.06 0.47 ± 0.08 0.47 ± 0.11 0.49 ± 0.13 0.46 ± 0.13
Single Predict GT from features and HWR 0.52 ± 0.08 0.53 ± 0.08 0.36 ± 0.15 0.57 ± 0.13 0.46 ± 0.17 0.46 ± 0.12
Single Predict GT from features and C 0.49 ± 0.11 0.50 ± 0.06 0.48 ± 0.12 0.52 ± 0.13 0.52 ± 0.13 0.49 ± 0.12
Single C (1-10 scale) 0.46 ± 0.06 0.44 ± 0.05 0.51 ± 0.10 0.60 ± 0.16 0.61 ± 0.09 0.51 ± 0.08
Single C (binarized >=5) - 0.44 ± 0.05 0.51 ± 0.10 0.60 ± 0.16 0.61 ± 0.09 0.51 ± 0.08
Single HNR (binarized >=5) - 0.56 ± 0.05 0.49 ± 0.10 0.40 ± 0.16 0.49 ± 0.08 0.39 ± 0.09
Single HWR (binarized >=5) - 0.51 ± 0.06 0.57 ± 0.11 0.42 ± 0.12 0.51 ± 0.11 0.48 ± 0.16

None Predict GT from features 0.49 ± 0.10 0.48 ± 0.10 0.42 ± 0.13 0.62 ± 0.12 0.54 ± 0.19 0.50 ± 0.11

Random Randomly pick between C HWR 0.59 ± 0.06 0.57 ± 0.07 0.47 ± 0.08 0.40 ± 0.13 0.46 ± 0.14 0.41 ± 0.11
Random Randomly pick between C HWR HNR 0.54 ± 0.07 0.53 ± 0.06 0.48 ± 0.09 0.47 ± 0.11 0.49 ± 0.11 0.46 ± 0.13
Random Randomly pick between C HNR 0.53 ± 0.13 0.50 ± 0.10 0.53 ± 0.11 0.47 ± 0.11 0.54 ± 0.07 0.46 ± 0.15



Table A3: Subgroup (whites) performance of models presented in Table A1.

Type Model AUC Bal Acc FPR FNR FDR FOR
Hybrid Composed indirect C HWR 0.59 ± 0.09 0.55 ± 0.08 0.30 ± 0.14 0.61 ± 0.11 0.49 ± 0.21 0.39 ± 0.10
Hybrid Indirect C HWR 0.59 ± 0.09 0.55 ± 0.08 0.30 ± 0.14 0.61 ± 0.11 0.49 ± 0.21 0.39 ± 0.10
Hybrid Composed indirect C HNR 0.56 ± 0.2 0.52 ± 0.17 0.41 ± 0.16 0.56 ± 0.2 0.55 ± 0.19 0.42 ± 0.18
Hybrid Direct C HWR 0.56 ± 0.08 0.58 ± 0.09 0.31 ± 0.18 0.53 ± 0.17 0.45 ± 0.24 0.36 ± 0.12
Hybrid Indirect C HNR 0.56 ± 0.2 0.52 ± 0.17 0.41 ± 0.16 0.56 ± 0.2 0.55 ± 0.19 0.42 ± 0.18
Hybrid Direct C HNR 0.53 ± 0.17 0.52 ± 0.13 0.39 ± 0.11 0.57 ± 0.21 0.56 ± 0.17 0.42 ± 0.15
Hybrid Direct C HWR HNR 0.52 ± 0.19 0.50 ± 0.13 0.43 ± 0.14 0.56 ± 0.2 0.57 ± 0.17 0.44 ± 0.14
Hybrid Weighted average of C HWR 0.48 ± 0.11 0.48 ± 0.06 0.42 ± 0.28 0.61 ± 0.25 0.59 ± 0.19 0.45 ± 0.14
Hybrid Weighted average of C HWR HNR 0.46 ± 0.08 0.44 ± 0.05 0.36 ± 0.10 0.76 ± 0.19 0.72 ± 0.13 0.46 ± 0.11
Hybrid Weighted average of C HNR 0.44 ± 0.08 0.46 ± 0.06 0.47 ± 0.33 0.60 ± 0.3 0.55 ± 0.21 0.51 ± 0.21

Single Predict GT from features and HWR 0.59 ± 0.09 0.58 ± 0.08 0.32 ± 0.15 0.52 ± 0.12 0.46 ± 0.21 0.36 ± 0.1
Single Predict GT from features and C 0.56 ± 0.14 0.55 ± 0.12 0.34 ± 0.10 0.56 ± 0.23 0.53 ± 0.16 0.39 ± 0.14
Single HWR (1-10 scale) 0.56 ± 0.12 0.53 ± 0.11 0.60 ± 0.18 0.34 ± 0.18 0.55 ± 0.12 0.39 ± 0.22
Single Predict GT from features and HNR 0.53 ± 0.19 0.53 ± 0.15 0.41 ± 0.12 0.54 ± 0.22 0.55 ± 0.17 0.41 ± 0.17
Single HNR (1-10 scale) 0.53 ± 0.15 0.46 ± 0.10 0.67 ± 0.15 0.42 ± 0.16 0.59 ± 0.09 0.51 ± 0.25
Single C (1-10 scale) 0.52 ± 0.11 0.48 ± 0.09 0.35 ± 0.15 0.69 ± 0.17 0.60 ± 0.21 0.44 ± 0.10
Single C (binarized >=5) - 0.48 ± 0.09 0.35 ± 0.15 0.69 ± 0.17 0.60 ± 0.21 0.44 ± 0.10
Single HNR (binarized >=5) - 0.47 ± 0.07 0.72 ± 0.13 0.34 ± 0.14 0.58 ± 0.08 0.50 ± 0.24
Single HWR (binarized >=5) - 0.52 ± 0.09 0.65 ± 0.15 0.31 ± 0.17 0.56 ± 0.10 0.40 ± 0.21

None Predict GT from features 0.55 ± 0.14 0.55 ± 0.12 0.37 ± 0.11 0.53 ± 0.2 0.51 ± 0.16 0.39 ± 0.14

Random Randomly pick between C HNR 0.61 ± 0.14 0.57 ± 0.13 0.37 ± 0.11 0.49 ± 0.18 0.49 ± 0.14 0.38 ± 0.17
Random Randomly pick between C HWR HNR 0.54 ± 0.12 0.50 ± 0.14 0.54 ± 0.13 0.45 ± 0.18 0.57 ± 0.14 0.42 ± 0.17
Random Randomly pick between C HWR 0.49 ± 0.08 0.47 ± 0.08 0.47 ± 0.12 0.58 ± 0.13 0.61 ± 0.17 0.45 ± 0.09

Table A4: Subgroup (other races) performance of models presented in Table A1.

Type Model AUC Bal Acc FPR FNR FDR FOR
Hybrid Weighted average of C HNR 0.64 ± 0.33 0.58 ± 0.23 0.47 ± 0.33 0.38 ± 0.44 0.63 ± 0.34 0.22 ± 0.25
Hybrid Composed indirect C HNR 0.62 ± 0.32 0.59 ± 0.24 0.29 ± 0.26 0.53 ± 0.39 0.52 ± 0.38 0.29 ± 0.21
Hybrid Indirect C HNR 0.62 ± 0.32 0.59 ± 0.24 0.29 ± 0.26 0.53 ± 0.39 0.52 ± 0.38 0.29 ± 0.21
Hybrid Weighted average of C HWR HNR 0.50 ± 0.25 0.57 ± 0.21 0.58 ± 0.37 0.29 ± 0.3 0.52 ± 0.27 0.33 ± 0.37
Hybrid Weighted average of C HWR 0.49 ± 0.24 0.52 ± 0.14 0.64 ± 0.26 0.32 ± 0.39 0.59 ± 0.23 0.29 ± 0.37
Hybrid Direct C HWR HNR 0.46 ± 0.22 0.44 ± 0.22 0.47 ± 0.31 0.66 ± 0.35 0.74 ± 0.33 0.48 ± 0.29
Hybrid Direct C HNR 0.43 ± 0.22 0.48 ± 0.18 0.32 ± 0.28 0.72 ± 0.25 0.61 ± 0.42 0.39 ± 0.13
Hybrid Direct C HWR 0.43 ± 0.17 0.39 ± 0.16 0.37 ± 0.23 0.85 ± 0.16 0.72 ± 0.37 0.52 ± 0.15
Hybrid Composed indirect C HWR 0.39 ± 0.24 0.44 ± 0.18 0.41 ± 0.31 0.70 ± 0.31 0.68 ± 0.37 0.51 ± 0.25
Hybrid Indirect C HWR 0.39 ± 0.24 0.44 ± 0.18 0.41 ± 0.31 0.70 ± 0.31 0.68 ± 0.37 0.51 ± 0.25

Single HNR (1-10 scale) 0.65 ± 0.22 0.59 ± 0.16 0.60 ± 0.17 0.21 ± 0.25 0.58 ± 0.2 0.25 ± 0.27
Single Predict GT from features and HWR 0.50 ± 0.18 0.47 ± 0.16 0.3 ± 0.22 0.75 ± 0.19 0.57 ± 0.36 0.47 ± 0.18
Single Predict GT from features and HNR 0.47 ± 0.26 0.47 ± 0.19 0.31 ± 0.25 0.75 ± 0.27 0.67 ± 0.44 0.38 ± 0.11
Single HWR (1-10 scale) 0.44 ± 0.26 0.43 ± 0.22 0.71 ± 0.23 0.44 ± 0.28 0.59 ± 0.24 0.52 ± 0.34
Single Predict GT from features and C 0.36 ± 0.31 0.49 ± 0.2 0.3 ± 0.18 0.71 ± 0.37 0.67 ± 0.37 0.35 ± 0.2
Single C (1-10 scale) 0.33 ± 0.2 0.47 ± 0.14 0.21 ± 0.16 0.85 ± 0.17 0.67 ± 0.41 0.50 ± 0.21
Single C (binarized >=5) - 0.39 ± 0.17 0.35 ± 0.22 0.88 ± 0.25 0.88 ± 0.25 0.35 ± 0.14
Single HNR (binarized >=5) - 0.61 ± 0.17 0.65 ± 0.22 0.12 ± 0.25 0.65 ± 0.14 0.12 ± 0.25
Single HWR (binarized >=5) - 0.53 ± 0.14 0.79 ± 0.16 0.15 ± 0.17 0.50 ± 0.21 0.33 ± 0.41

None Predict GT from features 0.48 ± 0.39 0.54 ± 0.26 0.3 ± 0.2 0.62 ± 0.42 0.61 ± 0.42 0.32 ± 0.23

Random Randomly pick between C HWR HNR 0.36 ± 0.28 0.44 ± 0.2 0.53 ± 0.22 0.59 ± 0.29 0.64 ± 0.25 0.46 ± 0.25
Random Randomly pick between C HWR 0.32 ± 0.2 0.34 ± 0.14 0.35 ± 0.21 0.96 ± 0.09 0.86 ± 0.38 0.55 ± 0.16
Random Randomly pick between C HNR 0.3 ± 0.33 0.33 ± 0.24 0.51 ± 0.32 0.83 ± 0.22 0.75 ± 0.35 0.53 ± 0.22



Supplementary Material D: Extended result tables for hybrid models for all defendants, not just
those for whom COMPAS and Human scores disagree

Table A5: Test-set performance of hybrid models built on all individuals, compared to just using a single risk score and other
baselines. The numbers presented are means and standard deviations calculated over 10 train-test splits. Best results in cyan
and bolded. A reduced version of this table can be seen in Table 5. Rows marked with ∗ are the rows labeled as best in Table 5.

Type Model AUC Bal Acc FPR FNR FDR FOR
Oracle Benevolent oracle 0.85 ± 0.03 0.81 ± 0.02 0.19 ± 0.04 0.19 ± 0.03 0.20 ± 0.04 0.18 ± 0.03
Oracle Adversarial oracle 0.57 ± 0.03 0.51 ± 0.02 0.50± 0.03 0.49 ± 0.05 0.53 ± 0.03 0.46 ± 0.04

Hybrid Weighted average of C HNR∗ 0.74 ± 0.03 0.65 ± 0.06 0.41 ± 0.21 0.29 ± 0.1 0.38 ± 0.06 0.30 ± 0.04
Hybrid Weighted average of C HWR∗ 0.74 ± 0.04 0.65 ± 0.06 0.40 ± 0.2 0.29 ± 0.11 0.36 ± 0.06 0.31 ± 0.05
Hybrid Direct C HWR HNR∗ 0.73 ± 0.03 0.66 ± 0.03 0.32 ± 0.05 0.36 ± 0.05 0.35 ± 0.05 0.34 ± 0.05
Hybrid Direct C HNR 0.72 ± 0.04 0.65 ± 0.03 0.34 ± 0.05 0.36 ± 0.06 0.38 ± 0.04 0.32 ± 0.04
Hybrid Direct C HWR 0.72 ± 0.03 0.65 ± 0.03 0.32 ± 0.06 0.38 ± 0.06 0.35 ± 0.06 0.35 ± 0.05

Single HNR (1-10 scale) 0.72 ± 0.03 0.66 ± 0.03 0.35 ± 0.04 0.32 ± 0.04 0.37 ± 0.03 0.30 ± 0.03
Single HWR (1-10 scale) 0.72 ± 0.03 0.66 ± 0.02 0.36 ± 0.04 0.31 ± 0.03 0.36 ± 0.04 0.32 ± 0.04
Single C (1-10 scale) 0.71 ± 0.03 0.65 ± 0.03 0.32 ± 0.03 0.38 ± 0.06 0.37 ± 0.03 0.33 ± 0.04
Single Predict GT from features and C 0.71 ± 0.03 0.64 ± 0.04 0.35 ± 0.04 0.36 ± 0.06 0.38 ± 0.04 0.33 ± 0.05
Single Predict GT from features and HWR 0.71 ± 0.03 0.67 ± 0.03 0.31 ± 0.05 0.36 ± 0.06 0.34 ± 0.05 0.33 ± 0.06
Single Predict GT from features and HNR 0.70± 0.03 0.64 ± 0.02 0.35 ± 0.04 0.37 ± 0.05 0.39 ± 0.03 0.33 ± 0.04
Single C (binarized >=5) - 0.65 ± 0.03 0.32 ± 0.03 0.38 ± 0.06 0.37 ± 0.03 0.33 ± 0.04
Single HNR (binarized >=5) - 0.66 ± 0.03 0.38 ± 0.04 0.30 ± 0.04 0.38 ± 0.03 0.30 ± 0.04
Single HWR (binarized >=5) - 0.66 ± 0.03 0.40 ± 0.04 0.28 ± 0.04 0.37 ± 0.04 0.31 ± 0.05

None Predict GT from features 0.69 ± 0.02 0.63 ± 0.03 0.37 ± 0.05 0.37 ± 0.06 0.40 ± 0.04 0.34 ± 0.04

Random Randomly pick between C HWR 0.73 ± 0.04 0.67 ± 0.03 0.34 ± 0.03 0.32 ± 0.03 0.35 ± 0.05 0.32 ± 0.04
Random Randomly pick between C HNR 0.72 ± 0.04 0.66 ± 0.04 0.33 ± 0.03 0.34 ± 0.05 0.36 ± 0.04 0.31 ± 0.04
Random Randomly pick between C HWR HNR 0.71 ± 0.03 0.67 ± 0.03 0.35 ± 0.03 0.31 ± 0.05 0.37 ± 0.03 0.30 ± 0.04

Table A6: Subgroup (African-Americans) performance of models presented in Table A5.

Type Model AUC Bal Acc FPR FNR FDR FOR
Oracle Benevolent oracle 0.85 ± 0.03 0.81 ± 0.03 0.23 ± 0.03 0.15 ± 0.04 0.18 ± 0.03 0.19 ± 0.05
Oracle Adversarial oracle 0.54 ± 0.07 0.49 ± 0.05 0.60± 0.08 0.42 ± 0.04 0.46 ± 0.05 0.56 ± 0.08

Hybrid Direct C HNR 0.73 ± 0.06 0.65 ± 0.05 0.47 ± 0.09 0.23 ± 0.08 0.34 ± 0.05 0.34 ± 0.1
Hybrid Weighted average of C HNR 0.73 ± 0.05 0.65 ± 0.07 0.48 ± 0.18 0.22 ± 0.09 0.33 ± 0.05 0.30 ± 0.14
Hybrid Direct C HWR HNR 0.72 ± 0.03 0.65 ± 0.03 0.44 ± 0.05 0.27 ± 0.06 0.30 ± 0.04 0.41 ± 0.07
Hybrid Weighted average of C HWR 0.72 ± 0.04 0.64 ± 0.06 0.47 ± 0.19 0.25 ± 0.1 0.30 ± 0.05 0.41 ± 0.07
Hybrid Weighted average of C HWR HNR 0.71 ± 0.05 0.62 ± 0.07 0.59 ± 0.24 0.17 ± 0.13 0.36 ± 0.07 0.23 ± 0.18
Hybrid Direct C HWR 0.70± 0.04 0.62 ± 0.02 0.47 ± 0.07 0.29 ± 0.06 0.32 ± 0.05 0.43 ± 0.05

Single Predict GT from features and HNR 0.71 ± 0.05 0.63 ± 0.04 0.49 ± 0.08 0.24 ± 0.08 0.35 ± 0.05 0.36 ± 0.1
Single HNR (1-10 scale) 0.71 ± 0.04 0.68 ± 0.04 0.39 ± 0.06 0.26 ± 0.05 0.30 ± 0.04 0.34 ± 0.07
Single Predict GT from features and C 0.70± 0.04 0.62 ± 0.04 0.49 ± 0.08 0.27 ± 0.06 0.32 ± 0.05 0.43 ± 0.08
Single HWR (1-10 scale) 0.70± 0.03 0.65 ± 0.03 0.43 ± 0.05 0.27 ± 0.04 0.29 ± 0.04 0.41 ± 0.05
Single C (1-10 scale) 0.69 ± 0.05 0.63 ± 0.04 0.43 ± 0.06 0.31 ± 0.07 0.34 ± 0.05 0.39 ± 0.07
Single Predict GT from features and HWR 0.69 ± 0.04 0.64 ± 0.04 0.45 ± 0.07 0.26 ± 0.06 0.30 ± 0.05 0.40 ± 0.07
Single C (binarized >=5) - 0.63 ± 0.04 0.43 ± 0.06 0.31 ± 0.07 0.34 ± 0.05 0.39 ± 0.07
Single HNR (binarized >=5) - 0.67 ± 0.04 0.41 ± 0.07 0.25 ± 0.05 0.32 ± 0.05 0.34 ± 0.07
Single HWR (binarized >=5) - 0.64 ± 0.03 0.48 ± 0.05 0.24 ± 0.05 0.31 ± 0.04 0.39 ± 0.07

None Predict GT from features 0.69 ± 0.04 0.62 ± 0.04 0.52 ± 0.06 0.23 ± 0.08 0.36 ± 0.05 0.36 ± 0.11

Random Randomly pick between C HWR 0.72 ± 0.04 0.66 ± 0.03 0.44 ± 0.04 0.24 ± 0.04 0.29 ± 0.04 0.38 ± 0.05
Random Randomly pick between C HNR 0.70± 0.04 0.65 ± 0.04 0.42 ± 0.05 0.27 ± 0.05 0.32 ± 0.04 0.36 ± 0.07
Random Randomly pick between C HWR HNR 0.70± 0.05 0.66 ± 0.04 0.42 ± 0.07 0.25 ± 0.05 0.32 ± 0.05 0.35 ± 0.08



Table A7: Subgroup (whites) performance of models presented in Table A5.

Type Model AUC Bal Acc FPR FNR FDR FOR
Oracle Benevolent oracle 0.84 ± 0.04 0.8 ± 0.03 0.13 ± 0.06 0.28 ± 0.04 0.23 ± 0.07 0.16 ± 0.05
Oracle Adversarial oracle 0.55 ± 0.05 0.48 ± 0.05 0.42 ± 0.06 0.61 ± 0.09 0.63 ± 0.08 0.4 ± 0.07

Hybrid Weighted average of C HWR 0.75 ± 0.05 0.65 ± 0.06 0.34 ± 0.22 0.37 ± 0.14 0.46 ± 0.1 0.23 ± 0.1
Hybrid Weighted average of C HWR HNR 0.74 ± 0.05 0.57 ± 0.08 0.64 ± 0.36 0.21 ± 0.22 0.55 ± 0.09 0.23 ± 0.31
Hybrid Weighted average of C HNR 0.72 ± 0.03 0.62 ± 0.07 0.35 ± 0.23 0.4 ± 0.16 0.46 ± 0.1 0.26 ± 0.11
Hybrid Direct C HWR 0.70± 0.04 0.62 ± 0.05 0.21 ± 0.07 0.54 ± 0.1 0.43 ± 0.12 0.29 ± 0.06
Hybrid Direct C HWR HNR 0.70± 0.04 0.63 ± 0.04 0.21 ± 0.05 0.53 ± 0.08 0.44 ± 0.1 0.29 ± 0.06
Hybrid Direct C HNR 0.67 ± 0.05 0.62 ± 0.04 0.22 ± 0.04 0.55 ± 0.07 0.43 ± 0.1 0.31 ± 0.05

Single HWR (1-10 scale) 0.74 ± 0.05 0.67 ± 0.05 0.29 ± 0.07 0.38 ± 0.06 0.44 ± 0.08 0.24 ± 0.07
Single HNR (1-10 scale) 0.70± 0.04 0.62 ± 0.05 0.33 ± 0.04 0.43 ± 0.06 0.47 ± 0.05 0.29 ± 0.07
Single C (1-10 scale) 0.69 ± 0.06 0.63 ± 0.05 0.24 ± 0.05 0.50± 0.12 0.44 ± 0.1 0.29 ± 0.05
Single Predict GT from features and HWR 0.69 ± 0.05 0.63 ± 0.06 0.2 ± 0.06 0.54 ± 0.09 0.43 ± 0.12 0.29 ± 0.06
Single Predict GT from features and C 0.67 ± 0.05 0.63 ± 0.03 0.19 ± 0.05 0.55 ± 0.05 0.4 ± 0.09 0.3 ± 0.05
Single Predict GT from features and HNR 0.66 ± 0.06 0.61 ± 0.05 0.23 ± 0.07 0.56 ± 0.08 0.45 ± 0.11 0.32 ± 0.05
Single C (binarized >=5) - 0.63 ± 0.05 0.24 ± 0.05 0.50± 0.12 0.44 ± 0.1 0.29 ± 0.05
Single HNR (binarized >=5) - 0.63 ± 0.05 0.36 ± 0.04 0.38 ± 0.06 0.47 ± 0.05 0.27 ± 0.07
Single HWR (binarized >=5) - 0.66 ± 0.04 0.31 ± 0.07 0.36 ± 0.05 0.45 ± 0.07 0.24 ± 0.07

None Predict GT from features 0.65 ± 0.05 0.60± 0.05 0.22 ± 0.08 0.57 ± 0.08 0.44 ± 0.13 0.32 ± 0.05

Random Randomly pick between C HWR 0.73 ± 0.04 0.64 ± 0.03 0.26 ± 0.07 0.46 ± 0.05 0.45 ± 0.08 0.27 ± 0.06
Random Randomly pick between C HNR 0.72 ± 0.06 0.65 ± 0.06 0.25 ± 0.03 0.45 ± 0.09 0.42 ± 0.07 0.28 ± 0.06
Random Randomly pick between C HWR HNR 0.70± 0.03 0.65 ± 0.05 0.3 ± 0.05 0.4 ± 0.08 0.44 ± 0.07 0.27 ± 0.06

Table A8: Subgroup (other races) performance of models presented in Table A5.

Type Model AUC Bal Acc FPR FNR FDR FOR
Oracle Benevolent oracle 0.84 ± 0.12 0.82 ± 0.09 0.09 ± 0.1 0.27 ± 0.17 0.16 ± 0.17 0.14 ± 0.12
Oracle Adversarial oracle 0.48 ± 0.1 0.46 ± 0.1 0.45 ± 0.14 0.62 ± 0.17 0.70± 0.1 0.38 ± 0.17

Hybrid Weighted average of C HWR HNR 0.76 ± 0.15 0.74 ± 0.18 0.18 ± 0.12 0.33 ± 0.37 0.41 ± 0.32 0.14 ± 0.13
Hybrid Weighted average of C HNR 0.75 ± 0.15 0.68 ± 0.17 0.30 ± 0.27 0.34 ± 0.29 0.44 ± 0.27 0.25 ± 0.28
Hybrid Direct C HNR 0.69 ± 0.12 0.56 ± 0.17 0.30 ± 0.1 0.58 ± 0.28 0.62 ± 0.24 0.30 ± 0.16
Hybrid Direct C HWR 0.69 ± 0.15 0.59 ± 0.12 0.21 ± 0.14 0.61 ± 0.24 0.55 ± 0.3 0.29 ± 0.14
Hybrid Direct C HWR HNR 0.68 ± 0.08 0.58 ± 0.08 0.27 ± 0.09 0.58 ± 0.2 0.58 ± 0.21 0.28 ± 0.15
Hybrid Weighted average of C HWR 0.66 ± 0.07 0.62 ± 0.07 0.31 ± 0.12 0.44 ± 0.13 0.52 ± 0.17 0.25 ± 0.11

Single HNR (1-10 scale) 0.73 ± 0.16 0.69 ± 0.14 0.32 ± 0.17 0.31 ± 0.2 0.44 ± 0.19 0.21 ± 0.18
Single Predict GT from features and C 0.69 ± 0.12 0.56 ± 0.17 0.29 ± 0.08 0.59 ± 0.27 0.60 ± 0.21 0.30 ± 0.15
Single Predict GT from features and HNR 0.69 ± 0.14 0.60± 0.21 0.26 ± 0.13 0.54 ± 0.37 0.55 ± 0.3 0.29 ± 0.19
Single Predict GT from features and HWR 0.67 ± 0.14 0.65 ± 0.1 0.22 ± 0.12 0.48 ± 0.17 0.45 ± 0.19 0.25 ± 0.13
Single HWR (1-10 scale) 0.66 ± 0.07 0.61 ± 0.05 0.37 ± 0.1 0.41 ± 0.12 0.54 ± 0.14 0.26 ± 0.1
Single C (1-10 scale) 0.64 ± 0.11 0.61 ± 0.09 0.20 ± 0.1 0.57 ± 0.14 0.46 ± 0.13 0.28 ± 0.14
Single C (binarized >=5) - 0.61 ± 0.09 0.20 ± 0.1 0.57 ± 0.14 0.46 ± 0.13 0.28 ± 0.14
Single HNR (binarized >=5) - 0.71 ± 0.14 0.34 ± 0.17 0.24 ± 0.2 0.43 ± 0.19 0.18 ± 0.17
Single HWR (binarized >=5) - 0.64 ± 0.08 0.43 ± 0.11 0.30 ± 0.14 0.54 ± 0.11 0.23 ± 0.12

None Predict GT from features 0.68 ± 0.16 0.57 ± 0.21 0.32 ± 0.14 0.53 ± 0.35 0.59 ± 0.28 0.30 ± 0.19

Random Randomly pick between C HWR HNR 0.66 ± 0.13 0.60± 0.09 0.30 ± 0.11 0.51 ± 0.14 0.53 ± 0.14 0.28 ± 0.15
Random Randomly pick between C HNR 0.62 ± 0.24 0.63 ± 0.18 0.26 ± 0.17 0.48 ± 0.28 0.48 ± 0.28 0.26 ± 0.18
Random Randomly pick between C HWR 0.58 ± 0.14 0.55 ± 0.08 0.28 ± 0.12 0.61 ± 0.15 0.57 ± 0.12 0.32 ± 0.14


